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The Ginzburg-Landau model with two-order parameters appears in many condensed-matter problems. How-
ever, even for scalar order parameters, the most general U�1�-symmetric Landau potential with all quadratic
and quartic terms contains 13 independent coefficients and cannot be minimized with straightforward algebra.
Here, we develop a geometric approach that circumvents this computational difficulty and allows one to study
properties of the model without knowing the exact position of the minimum. In particular, we find the number
of minima of the potential, classify explicit symmetries possible in this model, establish conditions when and
how these symmetries are spontaneously broken, and explicitly describe the phase diagram.
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I. INTRODUCTION

The Landau theory �1,2� offers a remarkably economic
description of phase transitions associated with symmetry
breaking. This breaking is described by an order parameter
�: the high-symmetry phase corresponds to �=0, while the
low-symmetry phase is described by ��0. Very often, the
order parameter can be directly related to physically observ-
able quantities, such as, for example, distortion of the crystal
lattice or spontaneous magnetization. The local version of
the Landau theory with a coordinate-dependent order param-
eter, known as Ginzburg-Landau �GL� theory, is the basis of
the phenomenological theory of superconductivity �3�. For a
variety of applications of the Landau theory to various
condensed-matter problems, see, e.g., �4� and references
therein.

In order to find if a given system is in its high- or low-
symmetry phase, one constructs a Landau potential that de-
pends on the order parameter, and then finds its minimum.
For a complex order parameter, its classic form �1,2� is

V��� = − a���2 +
b

2
���4 + o����4� . �1�

Near the phase transition, the higher-order terms o����4� are
usually assumed to be negligible. The values of the coeffi-
cients a and b and their dependence on temperature, pres-
sure, etc. can be either calculated from a microscopic theory,
if it is available, or considered as free parameters in a phe-
nomenological approach. The phase transition associated
with the symmetry breaking takes place when an initially
negative a becomes positive, and the minimum of the poten-
tial �1� shifts from zero to

��� =�a

b
ei�, �2�

with an arbitrary phase �.

Many systems are known in which two competing order
parameters �OP� coexist. Among them are the general
O�m� � O�n�-symmetric models �5�; the models with two in-
teracting N-vector OPs with O�N� symmetry �6�; spin-
density waves in cuprates �7�; competition between antifer-
romagnetism and superconductivity �8�; 4He with its
interplay of crystalline and superfluid ordering �9�; multi-
component �10�; nonconventional two-dimensional �11�;
spin-triplet p-wave �12�; and two-gap �13,14� superconduc-
tivity, with its application to magnetism in neutron stars �15�;
two-band superfluidity �16�; and even mechanisms of elec-
troweak symmetry breaking beyond the Standard Model
such as the two-Higgs-doublet model �2HDM� �17�.

To describe such a situation within GL theory, one con-
structs a Landau potential similar to Eq. �1�, which depends
on two order parameters, �1 and �2. With scalar order pa-
rameters, it can be written generically as

V��1,�2� = − aij��i
*� j� +

1

2
bijkl��i

*� j���k
*�l�, i, j,k,l = 1,2.

�3�

The coefficients of this potential can be considered indepen-
dent, although in each particular application they might obey
specific relations. One thus arrives at the general two-order-
parameter �2OP� GL model with quadratic and quartic terms.

Once Landau potential �3� is written, the next step is to
find its minimum, i.e., to solve the static homogeneous
Ginzburg-Landau equations. A rather surprising fact is that
these equations cannot be solved with straightforward alge-
bra. Differentiating the Landau potential with respect to �i
leads to a system of coupled algebraic equations of third
order, whose total degree of algebraic complexity is six,
which makes it impossible to solve in the general case.

In this paper, we argue that despite this computational
problem, there remains something that one can learn about
the most general two-order-parameter model in the mean-
field approximation: its phase diagram. As we will show
below, it is possible to classify all the phases according to the
symmetries of the model and properties of the ground state.*Igor.Ivanov@ulg.ac.be
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This idea is not new. In fact, there exists an extensive
literature dating back to the 1980s on minimization of
G-invariant potentials with several OPs �G being a group of
transformations of OPs�; see, e.g., �4,18,19� and references
therein. These works exploit the fact that the problem be-
comes simpler when reformulated in the orbit space instead
of the space of order parameters themselves �20�. This orbit
space is naturally sliced into several strata, which are linked
to the allowed phases of the model. To describe them, one
constructs the ring of G-invariant polynomials of the order
parameters and finds the minimal integrity basis �MIB� of
this ring. Different strata �i.e., different phases� correspond to
some particular relations among the MIB polynomials. This
general method has been applied to classification of the
phases of several relevant physical systems, for example to
p-wave superfluidity of 3He �21�, D-wave condensates �22�,
2HDM �23,24�, and to general Landau models with multi-
component and even multidimensional order parameters
�25,26�.

In light of this activity, it is somewhat surprising that the
most general GL model with two complex order parameters
and with the most general potential in the form of Eq. �3� has
never been studied in complete detail. Here we fill this gap
showing that in this case the analysis can be pushed much
farther than in the general situation, with important physical
consequences.

The approach presented here is based on the reparametri-
zation symmetry of the model, which allows one to establish
the Minkowski-space structure of the orbit space. The mini-
mization problem admits a transparent geometric interpreta-
tion, which leads to several theorems concerning the proper-
ties of the global minimum. Specific application of this
approach to the 2HDM was given in �28,29�. Here we ana-
lyze the case of two local order parameters �1�r�� and �2�r�� in
the general context, which can be relevant also for many
condensed-matter problems.

Geometric approach versus minimal integrity basis method

Let us stress from the very start the essential differences
between the geometric analysis of the present paper and the
standard approach based on the minimal integrity basis
�MIB� technique.

The first difference lies in the scope of these two ap-
proaches. The MIB leads to interesting results in the cases in
which the potential is invariant under a nontrivial group G of
transformation of the order parameters. The larger G is, the
richer is the spectrum of possible patterns of its spontaneous
violation. In particular, MIB methods have no role if G is the
trivial group.

In a typical situation one takes a highly symmetric
G-invariant potential constructed from powers of several
multidimensional order parameters up to a certain degree,
builds various invariants, finds the ones that form MIB, and
classifies the possible phases according to relations among
these invariants. This approach is rather general in a sense
that it can be applied, in principle, to any number and any
dimensions of order parameters. However, because of G in-
variance, the potentials usually contain very few terms.

The geometric approach presented here is limited to the
particular case of two complex scalar or vector order param-
eters, and to the fourth-degree potentials. However, within
these restrictions, we manage to work out the most general
model with all possible types of the OP interactions. The
only symmetry that we impose is the U�1� symmetry of the
free-energy density, which is a reasonable choice from the
physical point of view. In this aspect, our analysis is more
general than the MIB approach: we just take two OPs, con-
struct the free energy density in its full complexity, and study
everything that can ever happen in this model. That is, we
analyze all possible symmetry groups G and all possible pat-
terns of symmetry breaking.

The second difference concerns the procedures and the
results of these two approaches. In a situation when several
phases are possible, one wants to know which phase corre-
sponds to the ground state of the model �i.e., which phase is
stable�. In the usual MIB method, one can do nothing but
explicitly solve the algebraic equations and check the mini-
mum conditions. This can be done only if the equations are
simple enough, which in turns happen when the free-energy
density is simple. Thus, only sufficiently symmetric poten-
tials are fully tractable with the MIB method. Examples cited
in �24,26� are precisely of this type.

In terminology suggested by �27�, one should distinguish
between the angular problem �classifying all the allowed
phases� and the radial problem �actually finding the position
of the absolute minimum of a given potential�. MIB methods
allow one to solve the angular but not the radial problem.

In the case of the most general 2OP GL model, with its
large number of free parameters, this algebra cannot be
worked out explicitly. One ends up with a general algebraic
equation of sixth order, which one cannot solve analytically.
Thus, one is unable to solve the problem of minimization of
the potential using only the MIB formalism.

The strongest point of the present geometric approach is
that we avoid solving these equations and nevertheless we
rigorously prove several statements about the ground state of
the model. In other words, we study the properties of the
absolute minimum without solving the radial problem. This
is especially useful for the case of the smallest possible
group G, for which the MIB technique becomes redundant.
Thus, the geometric approach presented here is neither a par-
ticular case nor an improvement of the MIB method, but is
complementary to it.

The structure of the paper is the following. In Sec. II, we
introduce the formalism and derive a very compact expres-
sion for the free-energy functional. The extrema of the Lan-
dau potential cannot be found with straightforward algebra,
so in Sec. III we develop geometric tools that allow us to find
the number of extrema and minima of the potential. Section
IV is devoted to the special case of a potential stable in a
weak sense. Then, in Sec. V we give full classification of
explicit symmetries of the model and derive conditions when
and how these symmetries are spontaneously broken. All this
allows us to describe in Sec. VI the phase diagrams of the
model, listing the phases according to the number of minima
and symmetries. Here, we also discuss phase transitions and
argue that critical properties, too, can be calculated in geo-
metric terms. Sec. VII contains analysis of several simple
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cases, which provide illustration of the general approach. In
the short Sec. VIII, we outline conditions when solitons ap-
pear in this model. In Sec. IX, we outline characteristic fea-
tures of the general GL model with two complex N-vector
order parameters, and finally in Sec. X we draw our conclu-
sions. Appendixes provide some mathematical details and
derivations.

II. FORMALISM

In the main part of the paper, we will assume that �i�r��
are just complex numbers; modifications in the case of more
complicated OPs will be discussed in Sec. IX. Throughout
the paper, we also assume that the absolute values of ��i� are
not bounded from above.

Let us consider the free-energy density in the most gen-
eral globally U�1�-invariant 2OP GL model containing all
possible quadratic and quartic terms in the potential,

F = K + V2 + V4. �4�

It is a sum of the gradient term K,

K = �1�D� �1�2 + �2�D� �2�2 + �3�D� �1�*�D� �2�

+ �3
*�D� �2�*�D� �1� , �5�

where D� is either �� or the covariant derivative, and the Lan-
dau potential

V2 = − a1��1�2 − a2��2�2 − a3��1
*�2� − a3

*��2
*�1� , �6�

V4 =
b1

2
��1�4 +

b2

2
��2�4 + b3��1�2��2�2

+ 	b4

2
��1

*�2� + b5��1�2 + b6��2�2
��1
*�2� + c.c.

Free-energy density �4� contains 4+4+9=17 free param-
eters: real �1 ,�2 ,a1 ,a2 ,b1 ,b2 ,b3 and complex
�3 ,a3 ,b4 ,b5 ,b6.

By construction, the free energy remains invariant under
the U�1� group of simultaneous multiplication of �1 and �2
by the same global phase factor. We do not consider terms
that violate this symmetry, such as �1

2+ ��1
2�*.

Note that potential �6� contains quartic terms such as
��1�2��

1
*�2� that mix �1 and �2, which are usually absent in

many particular applications of the 2OP GL model. However,
in certain cases such terms appear, as it happens in the dirty
limit of a two-gap superconductor; see, e.g., �14�.

We stress that in our approach, it is essential that we in-
clude all possible terms from the very beginning.

A. Reparametrization symmetry

From the physical point of view, the order parameters �1
and �2 can be of the same �as in two-gap superconductors� or
of different nature �as in the case of superfluid and crystalline
ordering interplay�. However, one can always make OPs di-
mensionless, and once the free-energy density �4� is con-
structed and the problem of its minimization is posed, the

physical nature of the OPs becomes irrelevant.
One can then view OPs �1 and �2 as components of a

single complex 2-vector �,

� = ��1

�2
� ,

and consider transformations that mix �1 and �2. These are
assumed to be local transformations, i.e., they mix �i�r��
taken at the same point r�.

We start with the observation that the most general free-
energy density �4� retains its generic form under any regular
linear transformation between �1 and �2. In other words, any
transformation from the general linear group GL�2,C�

� → �� = T�, T � GL�2,C� �7�

again leads to Eq. �4� but with reparametrized coefficients,


�i,ai,bi� → 
�i�,ai�,bi�� = ���i,ai,bi� . �8�

The explicit link between T and � will be given below.
Since any T�GL�2,C� is invertible, so is �. Therefore, if

Eq. �7� is accompanied by the transform �−1 of the coeffi-
cients, then one arrives at exactly the same expression for the
free energy as before.

If one considers the free energy only, then the physical
observables, such as the depth of the Landau potential at the
minimum and the eigenvalues of the second derivative ma-
trix of the potential �the Hessian�, can be expressed in terms
of the coefficients 
�i ,ai ,bi� only. Therefore, the models
�� , 
�i ,ai ,bi�� and ��� , 
�i� ,ai� ,bi��� have the same sets of
observables. In other words, reparametrization transforma-
tions do not change the physical content of a given model;
they only affect the way we look at it. Thus, we have a
reparametrization freedom in this problem, with the rep-
arametrization group GL�2,C�.

The general linear group GL�2,C� is an eight-dimensional
Lie group. It can be written as

GL�2,C� = C* � SL�2,C� , �9�

where C* is the group of all multiplications of � by a non-
zero complex number and SL�2,C� is the special linear
group. Due to the U�1� invariance of the free energy, multi-
plication of � by an overall phase factor induces the identity
transformation of the coefficients, while the seven-
dimensional factor group GL�2,C� /U�1� induces nontrivial
transformations �. Thus, the 17-dimensional space of coeffi-
cients �i.e., the space of all possible 2OP GL models� be-
comes sliced into seven-dimensional regions of essentially
identical models linked by all possible �. The space of dis-
tinct physical situations is described by the corresponding
10-dimensional factor space.

B. Orbit space

Let us now introduce the four-vector r�= �r0 ,ri�
= ��†���� with components
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r0 = ��†�� = ��1�2 + ��2�2, ri = ��†�i�� = �2 Re��1
*�2�

2 Im��1
*�2�

��1�2 − ��2�2
� .

�10�

Here, index �=0,1 ,2 ,3 refers to the components in the in-
ternal space and has no relation to the space-time. Multiply-
ing �i by a common phase factor does not change r�, so each
r� uniquely parametrizes a single U�1� orbit in the �i space.
The U�1�-invariant free energy �4� can also be defined in this
�1+3�-dimensional orbit space.

The SL�2,C��GL�2,C� group of transformations of �
induces the proper Lorentz group SO�1, 3� of transforma-
tions of r�. This group includes 3D rotations of the vector ri
as well as “boosts” that mix r0 and ri, so the orbit space gets
naturally equipped with the Minkowski space structure with
metric diag�1,−1,−1,−1�. We stress again that the words
“Minkowski space” and “Lorentz group” always refer to the
internal space, not to the usual space-time.

Since the order parameters �1 and �2 are just complex
numbers, direct calculation shows that

r�r� � r0
2 − ri

2 = 0. �11�

Then, since r0	0 and since the values of r� are not re-
stricted from above, the orbit space of the 2OP GL model is
given by the forward lightcone LC+ in the Minkowski space.
As should be expected, the reparametrization group in the
orbit space, SO�1, 3�, leaves the orbit space invariant.

Analogously to r�, one can also introduce


� � �D� ��†���D� �� . �12�

Obviously, the reparametrization transformation laws of 
�

are the same as for r�.
All this allows us to rewrite the free energy �4� in a very

compact form,

F = K�
� − A�r� +
1

2
B��r�r�, �13�

with

K� =
1

2
��1 + �2,− 2 Re �3,2 Im �3,− �1 + �2� ,

A� =
1

2
�a1 + a2,− 2 Re a3,2 Im a3,− a1 + a2� ,

B�� =
1

2�
b1 + b2

2
+ b3 − Re�b5 + b6� Im�b5 + b6� −

b1 − b2

2

− Re�b5 + b6� Re b4 − Im b4 Re�b5 − b6�
Im�b5 + b6� − Im b4 − Re b4 − Im�b5 − b6�

−
b1 − b2

2
Re�b5 − b6� − Im�b5 − b6�

b1 + b2

2
− b3

� . �14�

Note that due to Eq. �11�, definition of the matrix B�� has

one degree of freedom, since B�� and B��˜ =B��−Cg�� with
any C are equivalent.

The quantities K�, A�, and B�� transform as 4-vectors and
a 4-tensor, respectively. This provides the explicit link be-
tween transformations T and � mentioned in Sec. II A. For
convenience, we collect in Appendix A some basic facts con-
cerning the manipulation of B��.

C. Properties of the coefficients

General physical requirements place restrictions on pos-
sible K� and B��.

First, the requirement that very large wave-vector oscilla-
tions must increase, not decrease, the free energy implies that
K� lies inside the future lightcone: K0	0, K�K�	0. This

condition remains true under an arbitrary SO�1, 3� transfor-
mation.

Second, we require that the potential is bounded from
below in the entire �i space. Since the potential is built out of
quadratic and quartic terms, V=V2+V4, this can be achieved
in two cases �here we coin the terminology of �30�, where the
stability of the Higgs potential in 2HDM was analyzed�: �i�
the potential is stable in a strong sense, if V4 increases in all
directions in the �i space; and �ii� the potential is stable in a
weak sense, if V4 is nondecreasing in all directions in the �i
space, and V2 increases along the flat directions of V4.

Let us focus on the case of the potentials stable in a strong
sense; the case of the potential stable in a weak sense will be
considered in Sec. IV. The requirement that V4 is positive
definite in the entire �i space means that the quadratic form
B��r�r� is positive definite on the future lightcone LC+. In
Appendix B, we prove that this is equivalent to the statement

I. P. IVANOV PHYSICAL REVIEW E 79, 021116 �2009�

021116-4



that B�� is diagonalizable by an SO�1, 3� transformation, and
after diagonalization it takes the form

B�� =�
B0 0 0 0

0 − B1 0 0

0 0 − B2 0

0 0 0 − B3

� with B0 	 B1,B2,B3.

�15�

We will refer to B0 as the “timelike” eigenvalue of B��, and
Bi, i=1,2 ,3, as its “spacelike” eigenvalues. The minus sign
in front of the spacelike eigenvalues is the result of the
Minkowski-space metric; see Appendix A. The degree of
freedom in the definition of B�� amounts to shifting all the
eigenvalues by the same constant and does not affect the
inequalities �15�. However, it can be used to manipulate the
signs of the eigenvalues.

Finding the eigenvalues of B�� explicitly in terms of bi
requires a solution of a fourth-order characteristic equation,
which constitutes one of the computational difficulties of
straightforward algebra. We reiterate that in our analysis we
never use these explicit expressions. Our analysis relies only
on the fact that the eigenvalues are real and satisfy Eq. �15�.

III. MINIMA OF THE LANDAU POTENTIAL

Having introduced the formalism that allows us to treat
the most general 2OP GL model, let us proceed to the task of
minimization of the free-energy functional. We do not con-
sider here the effects of nontrivial boundary conditions, so
we are looking for homogeneous solutions �i�r��= ��i� that
minimize the Landau potential �6�.

As mentioned in the Introduction, straightforward algebra
is of little help for the minimization problem, since the re-
sulting system of coupled equations �V /��i=0 cannot be
solved in the general case. However, one can still learn much
about the ground state of the general 2OP GL model without
finding its location explicitly. In this paper, we will provide,
in particular, answers to the following questions:

�i� How many extrema does the potential with given pa-
rameters have? How many of them are minima?

�ii� Can the global minimum be degenerate and when
does it happen?

�iii� When does the global minimum spontaneously break
an explicit symmetry of the potential?

�iv� What is the phase diagram of the model? What phase
transitions can take place during continuous change of the
coefficients of the model?

A. Number of extrema

Let us start with the number of extrema of a generic Lan-
dau potential. In order to find an extremum of V lying on the
future lightcone LC+, one can use the standard Lagrange
multiplier method. In this case, one needs to introduce only
one Lagrange multiplier �, which leads to the following sys-
tem:

B���r�� − ��r�� = A�,

�r���r�� = 0. �16�

Here, �r�� labels the position of an extremum. To avoid cum-
bersome notation, we omit �¯� in this subsection.

To establish how many solutions system �16� has, con-
sider the B��-diagonal frame �we remind the reader that for a
potential stable in a strong sense, such a frame always ex-
ists�. Then the first line in Eq. �16� takes the form

�B0 − ��r0 = A0, �Bi − ��ri = Ai. �17�

Rewriting ri=r0ni, where ni is a unit 3-vector, and eliminat-
ing �, one obtains

�A0 − �B0 − Bi�r0�ni = Ai. �18�

These three equations are coupled via the condition �n� �=1.
Consider the left-hand side �l.h.s.� of Eq. �18� at fixed r0 and
all the unit vectors ni. It parametrizes an ellipsoid with semi-
axes

A0 − �B0 − B1�r0, A0 − �B0 − B2�r0, A0 − �B0 − B3�r0.

�19�

Now imagine how this ellipsoid changes if r0 increases from
zero to infinity. Let us for simplicity assume that the eigen-
values of B�� are distinct and B1
B2
B3.

Assume first that A0	0. Then, at r0=0, Eq. �18� param-
etrizes a sphere with radius A0. As r0 increases, it turns into
a continuously shrinking ellipsoid with semiaxes �19�. At

r0 = r0
�1� �

A0

B0 − B1

this ellipsoid collapses to the interior of a planar ellipse with
semiaxes

A0
B2 − B1

B0 − B1
, A0

B3 − B1

B0 − B1
,

orthogonal to the first axis. As r0 increases further, this el-
lipse returns to an ellipsoid with two shrinking semiaxes and
one growing semi-axis, and at

r0 = r0
�2� �

A0

B0 − B2

it collapses again to a flat ellipse with semiaxes

A0
�B1 − B2�
B0 − B2

, A0
B3 − B2

B0 − B2
,

orthogonal to the second axis. Further on, at r0=r0
�3� it col-

lapses to an ellipse orthogonal to the third axis, and for even
larger values of r0 this ellipsoid increases infinitely.

For each r0 interval, the ellipsoid sweeps a certain region
in the three-dimensional space.

�i� During the first stage, 0
r0
r0
�1�, it sweeps the inte-

rior of the sphere of radius A0, passing through each point
exactly once.

�ii� During the second stage, r0
�1�
r0
r0

�2�, it sweeps a
certain region, bounded by the caustic surface shown in Fig.
1, left. It can be shown that each point inside this region is
swept exactly twice.
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�iii� During the third stage, r0
�2�
r0
r0

�3�, it sweeps twice
a similar caustic region, but oriented differently.

�iv� Finally, during the fourth stage, r0	r0
�3�, it sweeps

once the entire 3D space.
Note that the appearance of caustic regions in the poten-

tial extremization problem is natural, since this problem is
known to exhibit some catastrophe theory phenomena; see,
e.g., �4�.

Returning to the system �18�, which equates the l.h.s. to
the 3-vector Ai, one sees that in order get the number of
solutions of Eq. �18� without finding them explicitly, one
simply has to check whether Ai falls inside these regions.
Figure 1, right, illustrates this statement. It shows regions
with different numbers of extrema on the �A1 ,A3� plane for
A2=0 and some A0	0.

For the second possibility, A0
0, the situation is much
simpler. At r0=0 we again start with the sphere of radius
�A0�. As r0 grows, it turns into an ellipsoid with growing
semiaxes �which is due to B0−Bi	0�, and it sweeps once the
entire space outside the sphere.

The size of the above 3D regions is proportional to A0.
Therefore, in the �1+3�-dimensional space of 4-vectors A�,
they define the corresponding conical regions starting from
the origin. Therefore, the number of extrema of the potential
depends on where the 4-vector A� lies:

�i� If A� lies inside the past lightcone LC− �i.e., A0
0 and

�A� �
 �A0��, then system �16� has no solution. In this case, the
quadratic term of the potential, −A�r�, increases in all direc-
tions in the �i space. The only extremum of the potential is
the global minimum at the origin, which corresponds to the
high-symmetry ground state of the model.

�ii� If A� lies outside LC−, then at least one nontrivial
solution exists. If A0
0 in the B��-diagonal basis, i.e., A�

still lies in the lower hemispace, then this solution is unique
and is the global minimum of the potential.

�iii� If A� lies inside LC+, then at least two nontrivial
extrema exist.

�iv� If A� lies inside one or both caustic cones defined
above, then two additional extrema per cone appear.

In total, there can be up to six nontrivial extrema of the
potential in the orbit space. This result was also found inde-
pendently in �30� with a more traditional analysis of the
Higgs potential of 2HDM. The largest number of extrema is
realized in situations when A0	0 and Ai is sufficiently

small, so that A� lies inside both caustic cones.
Special care must be taken when r0 of an extremum is

exactly equal to one of the values r0
�i�. Then the sequence of

intersections of the ellipsoid with a given point Ai changes,
but the overall counting rules given above remain the same.
As we will see later, this situation corresponds to spontane-
ous violation of a discrete symmetry.

B. Number of local minima

In general, the above construction cannot distinguish a
local minimum from a saddle point or a maximum, so other
methods must be used to establish the number of local
minima.

First of all, let us note that potential �6� with restrictions
�15� cannot have nontrivial maxima �20,28�. This can be eas-
ily seen by drawing any ray in the �i space from the origin
and observing that the potential along this ray can be written
as ����2+����4 with �	0. This function can never have a
nontrivial maximum. Thus, the problem reduces to distin-
guishing minima from saddle points �in the orbit space�.

Take a generic extremum of the potential in the �1 ,�2
space, and calculate the second derivative matrix of the po-
tential �the Hessian� at this point,

��2��� =
�2V

������

. �20�

Here, �� are the four real degrees of freedom, real and
imaginary parts of �1 and �2,

�1 = �1 + i�2, �2 = �3 + i�4. �21�

We will refer to the eigenvalues of this matrix as “eigenfre-
quencies,” �a

2. Due to the U�1� invariance of the potential, it
always has one flat direction with zero eigenfrequency �one
Goldstone mode�, while among the other three, there is at
least one positive eigenfrequency. Let us call the signs of
these three eigenfrequencies �i.e., ���, ���, or ����
the signature of the Hessian.

Among the four degrees of freedom in the �i space, three
correspond to variations in the orbit space, i.e., to shifts of
the point r� on LC+ away from the extremum. If the extre-
mum is not at the origin, then these shifts are linear functions
of the shifts in the �i space, and the Jacobian corresponding
to this transformation is regular. Indeed, with the notation
�21�, one gets

1

2

�r�

���

=�
�1 �2 �3 �4

�3 �4 �1 �2

�4 − �3 − �2 �1

�1 �2 − �3 − �4

� . �22�

If �1 is non zero, then this matrix has one and only one zero
eigenvalue, with the corresponding right eigenvector �−�2,
�1, −�4, �3� being the Goldstone mode. This can be seen
most easily in the frame where r�� �1,0 ,0 ,1�, implying
�3=�4=0 �obviously, such a frame always exists for any
r��. The signature of the Hessian, therefore, is the same in
the �i space and in the orbit space.

For an extremum to be minimum, its signature must be
���. However, since the explicit expressions for �r�� can-

6
44

4

4

2

1

A1

A3

(b)(a)

FIG. 1. �Color online� Left: The envelope of ellipsoids for r0
�1�


r0
r0
�2�. Right: �A1 ,A3� section of the caustic surfaces in the Ai

space and of the sphere with radius A0. The number of solutions of
Eq. �18� is indicated for each region.
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not be given in the general case, checking this explicitly at
each extremum is also problematic. One can circumvent this
computational difficulty using the following Proposition.

Proposition 1. For each extremum, the Hessian remains
signature-definite within each conical region described in the
previous subsection.

Proof. Let us fix B�� and move A� continuously in the
parameter space, keeping it strictly inside one of the regions
described in the previous subsection. Let us pick up an ex-
tremum and follow how it changes when A� moves. Its po-
sition, its depth, as well as the eigenfrequencies are algebraic
functions of the components of A� and therefore they also
change continuously. So, if the Hessian changes signature
along at the end points of some A� path, then there exists a
point at which one of the eigenfrequencies is zero. Thus, the
expansion of the potential at this point starts from the third-
or fourth-order term, and this point corresponds to merging
of two or three simple extrema, respectively.

But such a merging cannot happen for A� lying strictly
inside the caustic regions. Indeed, if two sufficiently close
points ra

� and rb
� are both extrema of the potential, then their

respective zeroth components ra0 and rb0 are also close, so
the intersection points of the corresponding ellipsoids lie
close to the boundary of a caustic region. In the limit ra

�

→rb
�, the intersection points, A� being among them, ap-

proach the envelope �loosely speaking, the envelope can be
viewed as the locus of intersections of the “successive” el-
lipsoids�. �

So, since the signature of the Hessian remains the same
for all A� inside some region, one can select some represen-
tative A�, calculate the signature of the Hessian for it, and
then extrapolate the results for all the points inside this re-
gion.

Let us now calculate the number of minima inside the
innermost region of the A� space; see Fig. 1, right. For the
representative point in this region, A�= �A0 ,0 ,0 ,0�, calcula-
tions can be easily done explicitly. Indeed, it follows from
Eq. �18� that there are three pairs of extrema at r0=r0

�1�, r0
�2�,

and r0
�3�,

r0
�1��1, � 1,0,0�, r0

�2��1,0, � 1,0�, r0
�3��1,0,0, � 1� .

�23�

Again, let us order the eigenvalues Bi, B1
B2
B3 and ex-
pand the potential near the point �r��+=r0

�3��1,0 ,0 ,1�. If r�

=r0�1, sin � cos � , sin � sin � , cos ��= �r��++�r�, then

V = − A0r0 +
1

2
r0

2�B0 − B1 sin2 � cos2 �

− B2 sin2 � sin2 � − B3 cos2 ��

� −
A0

2

2�B0 − B3�
+

B0 − B3

2
��r0�2

+
A0

2�2

2

�B3 − B1�cos2 � + �B3 − B2�sin2 �

�B0 − B3�2 . �24�

Here, �r0 and � are small while � can be arbitrary. Since B3
is the largest spacelike eigenvalue, this point is a minimum,
and so is the other extremum of this pair, �r��−

=r0
�3��1,0 ,0 ,−1�. The same calculation for the extrema at

r0=r0
�1� and r0

�2� shows that they are saddle points. Thus, we
find that for A� lying in the innermost region, the potential
has two separate minima and four separate saddle points in
the orbit space.

As A� moves out of this region, the number of minima
does not increase. Indeed, one can show that crossing the
caustic surface at a generic point leads to the disappearance
of two saddle points or of one saddle point and one mini-
mum, but it cannot, for example, lead to the disappearance of
three saddle points and the appearance of a new minimum.
This can also be verified with the straightforward calcula-
tions similar to Eq. �24� by selecting points A� lying on the
axes �for this choice, all the extrema can also be studied with
explicit algebra�. Therefore, we arrive at the following
Proposition:

Proposition 2. The most general quadratic plus quartic
potential with two order parameters can have at most two
distinct local minima in the orbit space.

C. The principal caustic cone

In Sec. III A, we showed that for a generic potential there
exist two caustic cones in the A� space. If B1
B2
B3, they
correspond to r0

�1��r0�r0
�2� and r0

�2��r0�r0
�3�, respectively.

The analysis of Sec. III B shows that these two caustic cones
play different roles. It is the second cone, with r0

�2��r0
�r0

�3�, which we call the principal caustic cone, that sepa-
rates regions with a different number of minima. This is il-
lustrated by Fig. 2, which is an updated version of Fig. 1,
right, with the numbers of minima and saddle points shown
separately. The most straightforward proof is based on the
stability analysis of the extrema in three situations with A�

lying on each of the three axes and Proposition 1. The other
cone just separates regions with different numbers of saddle
points and does not affect directly the properties of the global
minimum.

D. Geometric reformulation of the search for the global
minimum

Consider again the potential term in Eq. �13�,

2+4
2+2

1+3 1+1

1+0

A1

A3

FIG. 2. The same as in Fig. 1, right, but with the number of
minima and saddle points shown separately as Nminima+Nsaddle.
Thick lines show the section of the principal caustic cone.
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V = − A�r� +
1

2
B��r�r�. �25�

Let us exploit the freedom in definition of B�� to make B0
	0 and all Bi
0. Then �B−1��� exists, and Eq. �25� can be
rewritten as

V =
1

2
B���r� − a���r� − a�� + V0, a� = �B−1���A�,

V0 = −
1

2
�B−1���A�A�. �26�

Let us now define an equipotential surface MC as a set of all
vectors p� in the Minkowski space M such that

B��p�p� = B0p0
2 + �

i

�Bi�pi
2 = C . �27�

One sees that equipotential surfaces exist for C�0 and are
3-ellipsoids nested into each other, with their eigenaxes
aligned in the B��-diagonal frame along the eigenaxes of
B��.

Returning to the potential �26�, we see that C is related to
the values of the potential: C=2�V−V0�. Therefore, finding
points in the orbit space with the same value of V amounts to
finding intersections of the corresponding MC with the for-
ward lightcone LC+. In particular, to find a local minimum of
the potential in the orbit space, one has to find an equipoten-
tial surface that touches LC+ �we say that two surfaces
“touch” if they have parallel normals at the intersection
points�. The global minimum corresponds to the unique
equipotential surface MCmin

that only touches but never in-
tersects LC+.

Thus, the geometric strategy for the minimization of the
potential is the following: �i� Construct a family of
3-ellipsoids MC at the base point a�; �ii� find the unique
3-ellipsoid MCmin that merely touches LC+ but never inter-
sects it; �iii� the contact point or points give the values of r�

�hence, �1 and �2� that minimize the potential.
To facilitate the visualization, Fig. 3 shows a

�1+2�-dimensional analogue of the contact between MCmin

and LC+. In this particular example, a�, which is located at
the center of the ellipsoid, lies outside LC+.

Alternatively, using Eq. �27� one can interpret the poten-
tial as the distance squared from the point a� in the Euclid-
ean metric diag �B0 , �B1� , �B2� , �B3��. The minimization prob-
lem is then reformulated as a search for points on LC+ that
are closest to a� in this metric. Since the forward lightcone
LC+ �together with its interior� is a concave region, this rep-
resentation immediate leads to the following conclusion: the
necessary condition for the existence of a degenerate mini-
mum is that a� lies inside LC+: a�a�	0. Later, in Sec. V C
we will give necessary and sufficient conditions for this to
happen.

The two geometric constructions described above, the
ones based on the equipotential surfaces and on the caustic
cones, are related to each other in the same manner as a
planar curve to its evolute. To illustrate this relation, let us
consider a simple planar problem: find on the unit circle
points of local minima of the “potential” V=Bij�ni−ai��nj
−aj� with Bij =diag�B1 ,B2�, B1�B2, Bi	0. In the coordi-
nates ñi= ��B�ijnj, the “potential” becomes V= �ñi− ãi�2, while
the unit circle is transformed into an ellipse. One can easily
verify that the number of local minima depends on whether
point ãi lies inside the evolute of this ellipse.

IV. POTENTIALS STABLE IN A WEAK SENSE

Let us now discuss how the above constructions change
for a potential stable in a weak sense, i.e., a potential whose
V4 can have flat directions in the �i space, along which the
potential is stabilized by the V2 term.

A flat direction of the quartic part of the potential in the �i
space corresponds to a vector r��LC+ in the orbit space
such that B��r�r�=0. Such an r� must be an eigenvector of
B��; see Appendix B. Let us first assume that there is only
one such direction. Aligning it with the first axis, one can
diagonalize B�� in the “transverse space,” bringing it to the
following generic form:

B�� =�
B0 + �B �B 0 0

�B − B0 + �B 0 0

0 0 − B2 0

0 0 0 − B3

�
with �B � 0,B0 	 B2,B3. �28�

Note that in contrast to the potentials stable in a strong sense,
Eq. �15�, this B�� cannot be diagonalized by an SO�1, 3�
transformation. Indeed, a boost along the first axis with “ra-
pidity” � leads to the same B�� as Eq. �28� but with rede-
fined �B→e−2��B �see Appendix A�. If �B�0, then B�� is
not diagonalizable.

To find the number of extrema in this case, one can again
start with system �16�, but instead of considering fixed A0
sections in the A� space one can fix one of its lightcone
components. Let us introduce the lightcone decomposition of
any 4-vector,

p� = p+n+
� + p−n−

� + p�
� , n�

� = �1, � 1,0,0� , �29�

where p�
� = �0,0 , p2 , p3�. The lightcone coordinates p� are

related to the zeroth and first coordinates p0, p1 as p�

FIG. 3. A �1+2�-dimensional illustration of the contact between
MCmin and LC+. Shown is the case of a� lying outside LC+.
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= �p0� p1� /2. Then, system �16� can be rewritten as

�B0 − ��r− = A−,

�B0 − ��r+ + 2�Br− = A+,

�Bi − ��ri = Ai, i = 2,3,

4r+r− = r2
2 + r3

2. �30�

The condition that the quadratic part of the potential V2=
−A�r� increases along the flat direction of V4 given by n+

�

implies that A−
0. Repeating the geometric analysis de-
scribed in full detail for the potential stable in a strong sense,
we arrive at the following conclusion:

�i� If A� lies inside the past lightcone LC−, then system
�30� has no solution. The global minimum is at the origin.

�ii� If A� lies outside LC− �but still with A−
0�, then
system �30� has a unique solution. The corresponding unique
extremum of the potential is the global minimum.

Suppose now that there is more than one flat direction of
V4. Let us pick up two such distinct vectors r1

�, r2
��LC+,

both eigenvectors of B��,

B��r1
� = �1r1�, B��r2

� = �2r2�.

Since r1
�r2��0, one obtains �1=�2. Then, using the freedom

in definition of B��, one can always set this common eigen-
value to zero. Then for any linear combination of these two
vectors, one gets

B����r1 + �r2�� = 0. �31�

Consider now such an SO�1, 3� transformation that makes
r1

��n+
� and r2

��n−
�. Then, B�� that satisfies Eq. �31� takes the

following generic form:

B�� =�
0 0 0 0

0 0 0 0

0 0 − B2 0

0 0 0 − B3

� with 0 � B2,B3. �32�

This form is diagonal �note also that it is equivalent to Eq.
�28� with �B=0�, so one can again switch to the fixed A0
sections. Since −A�r� must increase along n�

� , A0
0. Re-
peating the same analysis as in Sec. III A, one finds that the
potential has a unique nontrivial extremum if �A1�
 �A0� and
A�A�
0.

So, a potential stable in a weak sense is similar to the
potentials stable in a strong sense with A0
0 in the frame
with diagonal B��. It can have no more than one nontrivial
extremum, which is then necessarily the global minimum.

V. SYMMETRIES AND THEIR VIOLATION

A. Explicit symmetries

As explained in Sec. II A, the free energy remains invari-
ant under an appropriate simultaneous transformation of the
order parameters �i and the coefficients. It can happen, how-
ever, that the free energy is invariant under some specific

transformation of �i �or the coefficients� alone. We call this
symmetry an explicit symmetry of the free energy.

In the orbit space, this symmetry corresponds to such a
map of the Minkowski space M that leaves invariant, sepa-
rately, B��r�r�, A�r�, and K�
�. The notion of explicit sym-
metry is invariant under the Lorentz group of the orbit space
transformations; so, any SO�1, 3� transformation leaves a
given model in the same symmetry class.

In simple cases, the presence of a symmetry can be evi-
dent from a direct inspection of the free-energy functional,
see, e.g., examples in Sec. VII. In fact, in many concrete
applications, the Landau potential is even constructed in such
a way that some symmetry is preserved. In the general case,
however, a nonevident hidden symmetry can exist even in
complicated forms of the free energy, without being easily
noticeable. So, one needs a reparametrization-invariant crite-
rion that can help recognize the presence of a symmetry us-
ing only K�, A�, and B��. In addition, it would also useful to
know what this symmetry is.

Both questions are answered by the following Proposi-
tion:

Proposition 3. Suppose that the free energy �4� is explic-
itly invariant under some transformations of r�. Let G be the
maximal group of such transformations. Then �a� G is non-
trivial if and only if there exists an eigenvector of B�� or-
thogonal both to A� and K�; �b� group G is one of the fol-
lowing groups: Z2, �Z2�2, �Z2�3, O�2�, O�2��Z2, or O�3�, and
depends on the number of the eigenvectors of B�� to which
A� and K� are orthogonal, and on whether B�� has degener-
ate eigenvalues.

Proof. Let us start with the potential stable in a strong
sense. Let us denote the group of all explicit symmetries of
B��, A�, and K� by GB, GA, and GK, respectively. Obviously,

G = GB � GA � GK. �33�

The group of explicit symmetries is necessarily a subgroup
of the O�3� transformation group of the three-dimensional
space in the B��-diagonal frame; so one can switch to the
spacelike parts only �Bij ,Ai ,Ki�.

Consider now GB. If all spacelike eigenvalues of B�� are
different, then its only symmetries are reflections of each of
the spacelike eigenaxes, which generate group GB= �Z2�3. If
two eigenvalues coincide, then GB=O�2��Z2, and if all
three of them are equal, then GB=O�3�. Note that in all of
these cases the following statement holds: if some Z2 group
is a subgroup of GB, then its generator flips the direction of
some eigenvector of Bij.

Similarly, GA is O�2� �rotations around the axis defined by
Ai� if Ai is a nonzero vector, and O�3� otherwise. The same
holds for Ki, the only difference being the direction of the
axis. If we want G to be nontrivial, then the lowest possible
symmetry of Ai and Ki together �given by a Z2 group� must
also be a symmetry of Bij, i.e., it must flip one of the eigen-
vectors of Bij. In other words, both Ai and Ki are orthogonal
to this eigenvector. Since this purely spacelike eigenvector is
also the eigenvector of B��, we arrive at the first statement of
this Proposition.

Detailed classification depends on the number of eigen-
vectors of Bij that are orthogonal to Ai and Ki.
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�i� If Ai and Ki are orthogonal to all three eigenvectors
�Ai=Ki=0�, then G=GB.

�ii� If Ai and Ki are orthogonal to two eigenvectors �Ai �Ki
and are themselves eigenvectors of Bij�, then G= �Z2�2 or
O�2�.

�iii� Finally, if there is only one eigenvector of Bij or-
thogonal both to Ai and Ki, then the symmetry group is Z2.

For a potential stable in a weak sense, we first note that
the eigenvectors of B�� are either the lightcone vectors or
purely spacelike eigenvectors. Since K� lies inside LC+, it
cannot be orthogonal to any lightcone vector. Therefore, one
has to check the above conditions only for the “transverse”
eigenvectors, which reduces the above list of possible sym-
metry groups to Z2, �Z2�2, O�2�. �

The necessary and sufficient condition formulated in the
first part of this Proposition can be written in a
reparametrization-invariant way. The method is essentially
the same as in �31,32� and is based on a simple observation:
if a 3-vector ai is orthogonal to some eigenvector of a real
symmetric matrix bij, then the triple scalar product of vectors
ai, bijaj, and bijbjkak is zero. In Minkowski space, we intro-
duce

K0� � K�, K1� � B�
�K�, K2� � �B2��

�K�,

K3� � �B3��
�K�, �34�

where Bk is the kth power of B��. The same series can be
written for A�. For any four 4-vectors a�, b�, c�, and d�, we
introduce the short-hand notation

�a,b,c,d� � ���
�a�b�c
d�.

Then the condition “there exists an eigenvector of B�� or-
thogonal to K�” can be written as

�K0,K1,K2,K3� = 0. �35�

Note that since K� always lies inside the future lightcone, it
can be orthogonal only to spacelike eigenvectors of B��,
which is exactly what is needed. Then, the statement of
Proposition 3a can be reproduced if we accompany Eq. �35�
with a similar condition for A�,

�A0,A1,A2,A3� = 0, �36�

and with the condition that these two 4-vectors be orthogonal
to the same eigenvector of B��, for example,

�A0,A1,A2,K0� = 0. �37�

Conditions �35�–�37� can be straightforwardly checked in
any basis once B��, A�, and K� are known. Thus, the pres-
ence of any hidden symmetry can be verified without the
need to find this symmetry explicitly.

B. Symmetries of the potential versus symmetries of the free
energy

Explicit symmetries of the entire free energy depend on
Bij, Ai, and Ki, while the symmetries of the potential depend
only on Bij and Ai. Therefore, it might happen that the po-
tential has a larger symmetry group than the entire free en-
ergy. A simple example is

F = ���D� �1�2 + �D� �2�2� + 16����1�2 − v2�2 + ����2�2 − 4v2�2.

�38�

The potential here is symmetric under �2↔2�1, while the
gradient term is not.

The two notions, i.e., the symmetry of the potential or of
the entire free energy, play different roles. When one seeks
for the minimum of the Landau potential, the coefficients in
the gradient term �K�� are irrelevant. However, the symme-
try of the spectrum of small oscillations of the order param-
eters above the ground state is the one of the entire free-
energy functional.

C. Spontaneous breaking of an explicit symmetry

Even if the Landau potential is invariant under some
transformation of �, the values ��� that minimize it do not
necessarily have to preserve the same symmetry. In the orbit
space, if the Landau potential is invariant under a group G of
transformation of r�, then the position of the global mini-
mum might be invariant only under a proper subgroup of G.
In such situations, one speaks of spontaneous breaking of the
symmetry. Since the set of all global minima is invariant
under the full explicit symmetry group G, the spontaneous
breaking of an explicit symmetry always leads to degenerate
global minima.

For our problem, several results follow immediately from
Proposition 2:

�i� The global minimum can be only twice degenerate.
�ii� Minima that preserve and violate any discrete symme-

try cannot coexist.
�iii� The maximal breaking of any discrete symmetry con-

sists in removing only one Z2 factor: �Z2�k→ �Z2�k−1 with k
=1,2 ,3.

In addition, in �29� it was proven that the twice degener-
ate global minimum of Landau potential with quadratic and
quartic terms is always realized via spontaneous breaking of
some explicit Z2 symmetry of the potential �but not neces-
sarily of the entire free energy�.

Let us now consider the question of when a given explicit
symmetry is broken, focusing on the discrete symmetry case.

First of all, the global minimum must be degenerate. This
immediately leads to the conclusion that the spontaneous
violation can take place only in potentials stable in a strong
sense, and in addition, only when A� lies inside the principal
caustic cone. To make the discussion concrete, consider A�

and K� in the B��-diagonal frame. Suppose that all Bi are
distinct and the components A3=K3=0, while the other com-
ponents are nonzero. Then, the free energy has an explicit Z2
symmetry generated by reflections of the third coordinate.
This explicit symmetry is conserved if the global minimum
is at r�= �r0 ,r1 ,r2 ,0�, and it is spontaneously broken if the
two degenerate global minima are at r�

� = �r0 ,r1 ,r2 , �r3�
with r3�0.

Let us now recall the “shrinking ellipsoid” construction of
Sec. III A. A degenerate extremum implies that two distinct
points ni�, when inserted in system �18�, give the same point
Ai= �A1 ,A2 ,0� at the same r0. This happens only when r0
=r0

�3� and the planar vector �A1 ,A2� lies inside the ellipse
with semiaxes
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A0
�B1 − B3�
B0 − B3

, A0
�B2 − B3�
B0 − B3

.

Besides, as we prove in Appendix C, in order for this extre-
mum to be minimum, B3 must be the largest �i.e., the closest
to B0� eigenvalue among all Bi. Thus, one arrives at the fol-
lowing necessary and sufficient reparametrization-invariant
criterion for the spontaneous violation of a Z2 symmetry
�along the third axis�:

B3 	 B1,B2 and
A1

2

�B3 − B1�2 +
A2

2

�B3 − B2�2 

A0

2

�B0 − B3�2 .

�39�

It immediately follows from here that a� defined in Sec.
III D lies inside the forward lightcone.

Finally, we would like to stress one important point. What
is relevant for the whole discussion is the group G of explicit
symmetries and its reduction upon symmetry breaking, but
not the particular realization of the transformations of this
group. For example, the free energy can be symmetric under
�i→�

i
* transformation or under �1↔�

2
* transformation.

These seemingly distinct Z2 symmetries are, in fact, just dif-
ferent realizations of the same symmetry class. This becomes
evident in the orbit space, as the former transformation cor-
responds to the flip of the second axis, while the latter cor-
responds to the flip of the third axis; so, both models are
related by a reparametrization transformation. Therefore, all
properties of spontaneous violation of these two particular
sorts of the Z2 symmetry are in fact identical.

Thus, there exists a reparametrization-invariant class of
Z2-symmetric models, a reparametrization-invariant class of
�Z2�2-symmetric models, etc. Our analysis applies to all par-
ticular realizations of a given symmetry in contrast. This
rather simple fact illustrates the usefulness of considering the
most general GL model and might lead to establishing direct
links between seemingly unrelated models.

VI. PHASE DIAGRAM AND PHASE TRANSITIONS

A. Phase diagram

The results obtained in the previous sections allow us to
describe explicitly the phase diagram of the most general
model with two order parameters in the mean-field approxi-
mation. We do this by classifying the phases according to the
symmetries of the free-energy functional and to the proper-
ties of the ground state. For definiteness, we again sort the
eigenvalues Bi as B1�B2�B3. �i� Potential is stabilized by
the quadratic term �A� lies inside LC−�. The global minimum
is at the origin, �1=�2=0; this is the high-symmetry phase.
�ii� Potential stable in a weak sense. The global minimum is
always nondegenerate and preserves any explicit symmetry
of the free energy. �iii� Potential stable in a strong sense. B��

can be diagonalized, and one can work with its spacelike
part.

�1� All Bi are distinct.
�a� Ai and Ki are generic vectors �not orthogonal to any

eigenvector of Bij�. No explicit symmetry is present. There
can be one or two nondegenerate minima, depending on

whether Ai lies inside the principal caustic region.
�b� Ai and Ki are both orthogonal to one eigenvector of

Bij. The explicit symmetry group is Z2. The ground state can
either break or preserve this symmetry. The symmetry is bro-
ken if it is the third axis that Ai and Ki are orthogonal to �i.e.,
A3=K3=0� and if condition �39� is satisfied.

�c� Ai and Ki are both parallel to the same eigenvector of
Bij. The explicit symmetry group is �Z2�2. The ground state
can either preserve this symmetry or break it to Z2. The
criterion of the symmetry breaking is the same, Eq. �39�,
apart from the fact that now one of A1 ,A2 is zero.

�d� Ai and Ki are orthogonal to all three eigenvectors of
Bij �i.e., Ai=Ki=0, A0	0�. The explicit symmetry group is
�Z2�3. The global minimum is always twice degenerate and
breaks this symmetry to �Z2�2.

�2� Two eigenvalues among Bi coincide. Case B1
B2
=B3. The principal caustic cone reduces to a segment along
the first axis.

�a� Ai is not aligned along the first axis. Then, the global
minimum is nondegenerate. If Ki lies in the �e�1�i ,Ai� plane,
then there is an explicit Z2 symmetry that is preserved at the
minimum.

�b� Ai is the eigenvector of Bij along the first axis �A2
=A3=0�. Then, if condition �39� is satisfied, there is a con-
tinuum �namely, a circle� of degenerate minima, otherwise
the global minimum is nondegenerate. If, in addition, K2
=K3=0, then the explicit symmetry group is O�2�, and in the
case of symmetry breaking, it is broken to Z2. Instead, if Ki is
a generic vector, then the explicit symmetry group is Z2, and
it may be preserved or broken depending on which minimum
in the continuum is selected.

�c� Ai=Ki=0, A0	0. The explicit symmetry group is
O�2��Z2. There is always a continuum �a circle� of global
minima, and the symmetry is broken to �Z2�2.

�3� Two eigenvalues among Bi coincide. Case B1=B2

B3. The analysis is similar to the case with all distinct Bi,
with the following differences:

�a� If Ai and Ki are both parallel to the eigenvector e�3�i,
the explicit symmetry group is O�2� and it is always pre-
served at the global minimum.

�b� If Ai=Ki=0, then the explicit symmetry group is
O�2��Z2, which is broken at the global minimum to O�2�.

�4� All three eigenvalues Bi coincide.
For a generic pair of Ai and Ki, there is always an explicit

Z2 symmetry. It is promoted to the O�2� symmetry if Ai and
Ki are parallel, and to the O�3� symmetry if Ai=Ki=0. The
symmetry is always preserved, apart form the case A0=0,
when it is broken to O�2� or Z2.

B. First- and second-order phase transitions

A remarkable property of the two-order-parameter model
is that it can have a first-order phase transition even at zero
temperature and in the mean-field approximation. This is en-
tirely due to the coexistence of two local minima �in the orbit
space� with different depths. If upon continuous change of
the coefficients the relative depth of the two distinct minima
changes sign �the shallower minimum becoming the deeper
one�, the system occupying initially the global minimum be-
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comes metastable and can jump into the new global mini-
mum via fluctuations or quantum tunneling.

If B3 is nondegenerate, then the surface of first-order
phase transitions in the Ai space is the interior of the ellipse
at r0

�3�, i.e., it is given by Ai= �A1 ,A2 ,0�, where A1 ,A2 satisfy
Eq. �39�. The border of this ellipse,

A3 = 0,
A1

2

�B3 − B1�2 +
A2

2

�B3 − B2�2 =
A0

2

�B0 − B3�2 ,

is the critical line, at which the second-order phase transition
takes place. If B3 is degenerate, B1
B2=B3, then the
second-order phase transition takes place at isolated points,

A3 = A2 = 0, A1 = � A0
B3 − B1

B0 − B3
,

and the points of the first-order transitions form a linear seg-
ment between them. Finally, if all Bi are degenerate, then
there is a single critical point at the origin, Ai=0, and there is
no first-order phase transition.

Reconstruction of critical surfaces or lines in the A� space
is obvious.

C. Critical properties: An example

It appears plausible that all the mean-field critical expo-
nents of the general 2OP GL model are of a geometric nature
and can be calculated without the knowledge of the exact
position of the global minimum. Here, we do not explore this
issue in full detail, but just illustrate it with one example:
calculation of the critical exponent of the correlation length
with the aid of differential geometry.

Let us fix B�� and move A� continuously in its parameter
space. When it crosses the principal caustic cone �see Sec.
III C�, the number of minima changes. Two scenarios are
possible; see Fig. 4�a�. If A� enters the principal caustic cone
through a generic point, then an additional local minimum
appears together with an additional saddle point, as is shown
schematically in Fig. 4�b�. This bifurcation does not involve
the global minimum. However, if A� enters the principal
caustic cone through any of the critical points, then it is the
global minimum that bifurcates into a minimum-saddle-
minimum sequence, see Fig. 4�c�.

When A� approaches the critical surface or line, the cor-
responding eigenfrequency decreases and turns zero exactly
at the critical surface. If the distance from Ai to the critical
surface is �→0, the eigenfrequency associated with this bi-
furcation decreases as

�2 � ��. �40�

Here we used the fact that the Jacobian of the map of non-
Goldstone modes in �i space to the surface of LC+ is regular,
if the extremum is not at the origin; see Eq. �22�. The corre-
lation length then behaves as rc��−�/2. We argue that the
value of � is of a geometric nature and can be calculated
without the knowledge of the exact position of the minimum.

Let us first note that in the case of a single order param-
eter, �=1 simply because the eigenfrequency �2 is linearly
proportional to the coefficient a in the potential �1�. In the
two-order-parameter case, due to the higher dimensionality
of the A� space, one can approach a critical point from dif-
ferent directions.

As we described in Sec. III D, the search for the global
minimum can be reformulated as a search for points lying on
LC+ that are closest to a given point a� in the Euclidean
metric diag�B0 , �B1� , �B2� , �B3��. In Appendix D, using a planar
example, we show how to apply differential geometry to
analyze the properties of the potential near a critical point.
We showed, in particular, that the value of � depends on the
direction of approach to the critical point,

generic direction → � = 2/3,

symmetric approach → � = 1. �41�

These exponents are robust in the sense that they remain the
same for almost all �in the measure-theoretic definition�
regular planar curves. It applies also to the second-order
curves, which share the key property of the generic curves,
namely that they have points of no more than fourth-order
contact with a circle.

This technique can be extended to higher dimensions
leading to the same results. So, exponents �41� apply to our
problem as well, where the “symmetric approach” is under-
stood as “Ai lying in the A3=0 plane”; see Fig. 5.

It would be interesting to check the critical properties of
all possible phase transitions in the 2OP GL model and see
how many classes of critical behavior it can incorporate.

3

2

1

generic

critical

critical

a) c)b)

generic

FIG. 4. �a� Schematic view of the principal caustic region. The
two arrows enter it via a generic or a critical point. �b� Schematic
change of the potential upon a generic entrance into the principal
caustic cone. �c� Schematic change upon the entrance via a critical
point.

A =03

A =03

3

2

1

/

FIG. 5. �Color online� The principal caustic region in the Ai

space �dashed line� and its border, the critical line �think solid line�.
The critical exponent � depends on whether Ai approaches the criti-
cal line always staying in the plane A3=0 or from outside the plane.
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VII. EXAMPLES

Here we illustrate the general approach with several
simple examples. Some of them are relevant for condensed-
matter problems discussed in the literature.

A. Real coefficients

Consider a free-energy functional �4� with all real coeffi-
cients. It implies that the free energy remains invariant under
simultaneous transformation �i→�

i
*, which corresponds in

the orbit space to the reflection of the second coordinate,

r� = �r0,r1,r2,r3� → �r0,r1,− r2,r3� . �42�

Consequently, the 4-vectors and 4-tensor of the coefficients
are

B�� =�
· · 0 ·

· · 0 ·

0 0 − B2 0

· · 0 ·
�, A�,K� = �· , · ,0, · � , �43�

where dots indicate generic values. Evidently, conditions
�35�–�37� are satisfied.

Just to give a particular example, consider the free-energy
functional of a two-gap superconductor in the dirty limit; see
Eq. �49� in �14�. Its potential can be rewritten in the
reparametrization-invariant way �13� with

B�� =
1

2�
b1 + b2

2
− bi − 2bi 0 −

b1 − b2

2

− 2bi 0 0 0

0 0 0 0

−
b1 − b2

2
0 0

b1 + b2

2
− bi

� ,

A� =
1

2
�− a1 − a2,ai,0,a1 − a2� . �44�

Here we used the notation of �14�: coefficients a1 ,b1 and
a2 ,b2 refer to the properties of the first- and second-order
parameters, respectively, while ai ,bi describe interaction
terms. The gradient terms considered in �14� are anisotropic,
but they also contain real coefficients. As a result, A� and K�

are orthogonal to the second eigenvector of B��. Note that in
this example, the eigenvalue B2=0. In order to find the other
eigenvalues, one has to solve the cubic characteristic equa-
tion.

If the position of the global minimum has �r2�=0, then the
symmetry is preserved, and there is no relative phase be-
tween the two order parameters. If �r2��0, then the symme-
try is spontaneously broken, and ��1� and ��2� in the ground
state have a nonzero relative phase. In order to find whether
spontaneous violation takes place, one has to diagonalize
B��, find its eigenvalues as well as find A� in this frame, and
then check inequality �39�.

If one requires, in addition, that the order parameters �i
themselves be real, then r2�0, and the second axis can be

omitted altogether. The orbit space is then simplified to the
forward lightcone in the �1+2�-dimensional Minkowski
space. Repeating the analysis of Sec. III, one obtains now at
most four nontrivial extrema, among which up to two can be
minima, and only one caustic cone.

The phase diagram in this case is simpler. For example, in
Fig. 6 we show phases in the Ai space for the case B3	B1
and, for simplicity, we assume that Ki=0. The astroid shown
here is the planar analogue of the cusped region from Fig. 1
and Fig. 2. It separates the Ai regions corresponding to po-
tentials with one minimum �phase I� and two minima �phase
II�. In addition, if Ai lies on the axes, the potential has an
explicit symmetry. Dashed lines correspond to the cases in
which the ground state conserves the symmetry �phases Ic
and IIc�, while the thick solid line corresponds to the phase
that spontaneously breaks the discrete symmetry �phase IIv�.

B. No �1 Õ�2 mixing in the quartic potential: b5=b6=0

The situation simplifies considerably if the quartic poten-
tial does not mix �1 and �2, i.e., when b5=b6=0. In this case,
B�� breaks into two 2�2 blocks and can be easily diagonal-
ized by a boost along the third axis �see Appendix A for
details� with “rapidity,”

� =
1

4
log�b1

b2
� , �45�

where we assumed b1	b2, and by the rotation between the
first and second axes by an angle equal to half of the phase of
b4. The resulting eigenvalues are

B0 =
1

2
��b1b2 + b3�, B1,2 = �

�b4�
2

, B3 =
1

2
�− �b1b2 + b3� .

�46�

The condition for the stability in a strong sense of the poten-
tial is

1

3

I
II

IIv
IIc

Ic

FIG. 6. Phases of the general Ginzburg-Landau model with two
real order parameters on the Ai plane, classified according to the
number of minima and conservation or violation of explicit symme-
tries. Shown is the case B1
B3.
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b1 	 0, b2 	 0, �b1b2 + b3 	 �b4� . �47�

If A� and K� are generic vectors, then the further analysis
proceeds as in the generic case.

C. Interaction only via the ��1�2��2�2 term

Let us assume now that the only interaction between the
two OPs is given by the b3��1�2��2�2 term. The 4-vector A�

can be written as �A0 ,0 ,0 ,A3�, so that the potential has an
explicit O�2� symmetry. The eigenvalues of B�� expressed in
terms of the original coefficients are

B0 =
1

2
��b1b2 + b3�, B1,2 = 0, B3 =

1

2
�− �b1b2 + b3� ,

�48�

where for stability we require �b1b2+b3	0. In the frame
where B�� is diagonal, A� takes the form

�Ã0,0,0,Ã3� = �A0 cosh � + A3 sinh �,0,0,A3 cosh �

+ A0 sinh �� , �49�

where � is given by Eq. �45�.
If B3	0, i.e., b3	�b1b2, then the explicit O�2� symmetry

is always conserved, since B1 and B2 are not the largest
spacelike eigenvalues. The global minimum is at �r���n+

� or
n−

�, which corresponds to

��1� � 0, ��2� = 0 or ��1� = 0, ��2� � 0.

If B3
0 and if A� lies inside the caustic cone, then this
symmetry is spontaneously broken, and there exists a con-
tinuum of global minima with both ��1��0 and ��2��0 and
an arbitrary relative phase between them. The condition that
A� lies inside the caustic cone is

� Ã3

B1 − B3
� 


Ã0

B0 − B1
,

which, in terms of the original coefficients, translates into

a1
b3

b1

 a2 
 a1

b2

b3
. �50�

Of course, the same bounds can be obtained by direct calcu-
lations.

Note that in the case of no interaction at all, b3=0, the
condition for the symmetry violation reads �A3 � 
A0. This
means a1	0, a2	0, which is indeed expected.

VIII. SOLITONS

Two local order parameters can lead to the existence of
solitons, i.e., states with nontrivial coordinate dependence of
the mean-field values of the order parameters ��i��r�� stable
against small variations ���i��r�� of these OP profiles. Some
particular versions of such solitons have already been de-
scribed in the literature. For example, in �33�, a one-
dimensional two-band superconductor with a simple inter-
band interaction term was considered, whose ground state

corresponded to ��1� and ��2� with zero relative phase. Then,
a typical sine-Gordon soliton was constructed with the rela-
tive phase between the two OPs continuously changing from
zero to 2� at x= ��, correspondingly. Similar solitons in
the scalar sector of 2HDM were described in �34�.

The existence of solitons in a given 2OP GL model de-
pends on the geometry of the potential in the orbit space. For
example, in order to support a one-dimensional soliton simi-
lar to the one described above, the Landau potential must
have a certain “valley” �i.e., a region of low values of the
potential� of nontrivial topology on the forward lightcone
LC+, that would include the global minimum and a saddle
point. At x→−�, ��i��x� approach their values at the global
minimum. As x increases, the corresponding point �r���x� in
the orbit space moves away from the global minimum posi-
tion, follows some path in the valley, and returns again to the
global minimum. Small variations of ��i��x� would pull this
path out of the valley, increasing its potential energy.

The existence, stability, and geometric properties �e.g., di-
mensionality� of these solitons are sensitive only to the gen-
eral structure of the model, and do not require one to search
for the explicit position of the extrema. Therefore, one can
hope to obtain these criteria for a general 2OP GL model in
terms of geometric constructions studied in this paper.

IX. MULTICOMPONENT ORDER PARAMETERS

So far, we assumed that the order parameters �1 and �2
are just complex numbers. However, in many physical situ-
ations one introduces multicomponent order parameters. Ex-
amples include 2HDM, superfluidity in 3He, nonconven-
tional superconductivity, spin-density waves, etc.

The formalism presented above is applicable to these
cases as well. In fact, it was first developed in �28,29� spe-
cifically for 2HDM. Here, we discuss characteristic features
that appear in a generic GL model with two N-vector order
parameters and a U�N�-symmetric potential.

A. Modifications to the formalism

Let us assume that each �i is an N-dimensional complex
vector: �i�, �=1, . . . ,N. A U�N�-symmetric potential must
depend on the order parameters only via scalar combinations
��i

†� j�, i , j , =1 ,2, which parametrize the U�N� orbits. The
only difference with the scalar case is that an additional term
proportional to

��1
†�2���2

†�1� � ��1�2��2�2 �51�

appears in the potential, with a new independent coefficient
b3� in front. The definition of r� remains the same; however,

r�r� = 4���1
†�2���2

†�1� − ��1�2��2�2� � 0. �52�

Therefore, the orbit space now is not only the surface, but
also the interior of the forward lightcone LC+. This removes
the degree freedom in definition of B��, making it uniquely
defined,
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B�� =
1

2�
b1 + b2

2
+ b3 − Re�b5 + b6� Im�b5 + b6� −

b1 − b2

2

− Re�b5 + b6� b3� + Re b4 − Im b4 Re�b5 − b6�
Im�b5 + b6� − Im b4 b3� − Re b4 − Im�b5 − b6�

−
b1 − b2

2
Re�b5 − b6� − Im�b5 − b6�

b1 + b2

2
− b3

� . �53�

The requirement that the potential is stable in a strong sense
implies that B�� must be positive definite on and inside LC+.
This leads not only to B0	Bi, but also to B0	0. Note that
due to the absence of freedom in B��, cases with singular
B�� and with Bi of different signs must be considered as
well.

B. Consequences

Let us discuss the modification of the above analysis due
to the multicomponent order parameters.

A new phase appears, which is characterized by a stronger
breaking of the symmetry of the potential. It corresponds to
the global minimum of the potential �r�� lying strictly inside
the lightcone LC+. This is possible only when ��1� and ��2�
are not proportional to each other. In other words, one can
always perform a simultaneous “intravector” U�N� transfor-
mation of both order parameters that makes them

��1� =�
0

]

0

v1

�, ��2� =�
0

]

u

v2ei�
� , �54�

where dots indicate zeros. Here, u, v1, v2, � are real, and u
and v1 must be nonzero in order for r� constructed from
them to lie strictly inside LC+.

Solution �54� with nonzero u preserves only a U�N−2�
symmetry, while a normal solution lying on LC+ and corre-
sponding to u=0 preserves a U�N−1� symmetry. For ex-
ample, in the context of the two-Higgs-doublet model �N
=2�, such a solution corresponds to a complete breaking of
the electroweak symmetry group SU�2��U�1�. Such a
phase breaks the electric charge conservation, and makes the
photon massive.

Conditions when this phase appears were established in
�28�. Since �r��, which corresponds to such a nonsymmetric
phase, is not restricted anymore to lie on the surface of LC+,
the extremum condition of the potential takes a very simple
form,

B��r� = A�. �55�

If B�� is nonsingular, then solution of Eq. �55� always exists
and is unique. If the potential has any additional explicit
symmetries, this symmetry is always conserved in this phase.
If B�� is singular, then depending on A�, Eq. �55� can have
an empty set or a continuum of solutions.

Whether the solution of Eq. �55� corresponds to a physi-
cally realizable extremum of the potential depends on
whether a�= �B−1���A� lies inside LC+. If it is so, then it can
be a minimum or a saddle point. It is a minimum �and nec-
essarily the global minimum� when B�� is positive definite in
the entire Minkowski space, i.e., when all Bi
0.

The search for the extrema on the forward lightcone LC+

proceeds in the same way as before. One again introduces
equipotential surfaces MC, but due to fixed eigenvalues Bi
their geometry can be different. A typical MC can now be
any 3-quadric: a 3-hyperboloid, a 3-ellipsoid, a 3-cone, or a
3-paraboloid. The geometric reformulation of the problem
remains unchanged: the search for the global minimum cor-
responds to the search for the unique 3-quadric with the base
point a� that touches but never intersects the forward light-
cone.

As a result, virtually all the statements about the number
of extrema and minima, about the symmetries, and their
spontaneous violation remain the same. The only difference
is that r� can shift from the surface of LC+ inwards, and in
order for an extremum on LC+ to be a minimum, this shift
must also increase the potential. This means that the
Lagrange multiplier � in Eq. �16� must be positive. In fact,
the eigenfrequencies �2 of oscillations that make N-vectors
�1 and �2 nonparallel are proportional to �. In 2HDM, they
correspond to the masses of charged Higgs bosons �28,30�.

X. CONCLUSIONS

The aim of this paper was to provide an exhaustive de-
scription of the general two-order-parameter model with all
possible U�1�-symmetric quadratic and quartic interaction
terms in the mean-field approximation. The principal diffi-
culty in the study of this model lies in the fact that the Lan-
dau potential cannot be minimized with straightforward al-
gebra. Here we showed that despite this difficulty, one can
still learn a lot about the phase structure of this model. We
developed the Minkowski-space formalism based on the rep-
arametrization symmetry of the model and reformulated the
minimization problem in simple geometric terms. We then
proved several statements concerning the properties of the
model �the number of extrema and minima, symmetries and
their violation, and the phase diagram�.

The most general 2OP GL model can be viewed as a
“template” for many particular realizations of the two-order-
parameter model used in various condensed-matter prob-
lems. We believe that by considering the most general case,
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one can gain a more transparent understanding of phenom-
ena taking place in particular situations, and one might even
establish new links between seemingly unrelated models.

We also note that the general method used in this paper
�consider the model in the most general case, find the group
of reparametrization symmetries, and use it to find the struc-
ture behind the model� is very general and might turn out
helpful in other circumstances.

There remain several directions for future work. First, us-
ing the dependence of the coefficients on temperature, pres-
sure, etc., one can trace in detail the sequence of phase tran-
sitions as well as their critical properties in the mean-field
approximation. Second, one should study modifications
caused by the presence of external fields �e.g., magnetic
fields for two-gap superconductors� and nontrivial boundary
conditions. Third, one should analyze effects beyond the
mean-field approximation; in particular, one should study
how the symmetries of the model evolve under the
renormalization-group flow. Fourth, one should closely ex-
amine the existence, stability, and dynamics of the solitons.
Finally, an extension of the approach to models with several
order parameters and/or with matric-valued OPs also appears
to be feasible.
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APPENDIX A: MANIPULATION WITH 4-TENSOR B��

Here we collect some simple facts about the real symmet-
ric 4-tensor B��. Let us first give explicit expressions for B��

with raised or lowered indices,

B�� = �B00 B0j

B0i Bij
�, B�

� = B��g�� = �B00 − B0j

B0i − Bij
� ,

B�� = � B00 − B0j

− B0i Bij
� . �A1�

Here i, j=1,2 ,3. Note that B�
� is not symmetric.

Upon an SO�3� rotation, B00 remains invariant, while B0i
and Bij transform as a real 3-vector and a symmetric
3-tensor, respectively. Upon a boost with “rapidity” �, say,
along the first axis, B�� transforms as

B�� =�
b00 b01 b02 b03

b01 b11 b12 b13

b02 b12 b22 b23

b03 b13 b23 b33

�
→ �B���� =�

b00� b01� b02� b03�

b01� b11� b12� b13�

b02� b12� b22� b23�

b03� b13� b23� b33�
� , �A2�

where

b00� =
b00 − b11

2
+

b00 + b11

2
cosh 2� + b01 sinh 2� ,

b11� = −
b00 − b11

2
+

b00 + b11

2
cosh 2� + b01 sinh 2� ,

b01� =
b00 + b11

2
sinh 2� + b01 cosh 2� ,

b0a� = b0a cosh � + b1a sinh � , b1a� = b1a cosh � + b0a sinh � ,

bab� = bab, a,b = 2,3.

The eigenvalues Bi and eigenvectors e�i�
� of B�� are defined

according to

B��e�i�
� = Big��e�i�

� , or equivalently B�
�e�i�� = Bie�i��.

�A3�

The fact that B�
� is not symmetric implies that the some

eigenvalues might be, in general, complex. However, as
proven below, positive definiteness of B�� on the forward
lightcone LC+ ensures that they are real.

In the diagonal basis, one has

B�� =�
B0 0 0 0

0 − B1 0 0

0 0 − B2 0

0 0 0 − B3

� ,

B�
� =�

B0 0 0 0

0 B1 0 0

0 0 B2 0

0 0 0 B3

� .

If one considers a quadratic form in the space of 4-vectors p�

constructed on B��, then in the diagonal basis it looks as

B��p�p� = B0p0
2 − �

i

Bipi
2.

This quadratic form is positive definite in the entire space of
nonzero vectors p�, if and only if all Bi are negative.

APPENDIX B: POSITIVE DEFINITENESS OF V4

A potential stable in a strong sense was defined as the one
whose quartic part V4 is strictly positive definite in the entire
space of the order parameters �i except the origin. In the
orbit space it corresponds to B��r�r� being positive definite
on the entire forward lightcone LC+ expect the apex. This
criterion can be formulated in terms of the eigenvalues of
B��.

Proposition 4. Tensor B�� is positive definite on the future
lightcone except the apex if and only if the following condi-
tions are met:

�i� B�� is diagonalizable by an SO�1,3� transformation.
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�ii� All spacelike eigenvalues Bi are smaller than the time-
like eigenvalue B0.

Proof. Obviously, if B�� satisfies conditions �i� and �ii�,
then the positive definiteness follows immediately. So, one
needs to prove that these conditions follow from the positive
definiteness.

The first step is to prove that the positive definiteness on
LC+ implies that all the eigenvalues of B�� are real.

Suppose, on the contrary, that there exists a pair of non-
zero complex eigenvalues, b and b*, with respective �and
necessarily complex� eigenvectors p� and q�,

B�
�p� = bp�, B�

�q� = b*q�.

One can show that there can be only one pair of complex
eigenvalues, thus b is nondegenerate. Since B�

� is real, q�

� p�* �and can be taken equal to p�*�. These eigenvectors
are orthogonal, p�q�=0, which follows from the standard
argument due to b�b*, and can be normalized so that
p�p�=q�q�=1.

Consider now a nonzero real vector r�,

r� = cp� + c*p*�,

such that r�r�=c2+c*2=2�c�2 cos�2�c�=0. At fixed �c�, four
such vectors are possible. Take two of them: r1/4

� and r3/4
� ,

corresponding to �c=� /4 and 3� /4. The quadratic form cal-
culated on these vectors is

B��r�r� = bc2 + b*c*2 = 2�b��c�2 cos�2�c + �b�

=  2�b��c�2 sin��b�

for r1/4
� and r3/4

� , respectively. Since b is not purely real,
sin��b��0; in one of the two cases B��r�r�
0, which con-
tradicts the assumption.

After all the eigenvalues of B�� are proven to be real, the
eigenvectors can also be chosen all real and orthonormal.
These eigenvectors cannot lie on LC+ �otherwise there would
be a flat direction of V4�, so there is one vector inside LC+

with positive norm, norm p0
�p0�=1, and three spacelike

eigenvectors with negative norms pi
�pi�=−1 for each i

=1,2 ,3. Thus, the transformation matrix T that diagonalizes
B�� is real, and after diagonalization B�� takes the form
diag�B0 ,−B1 ,−B2 ,−B3�. Note that transformation T also con-
serves norm, so it can be realized as a transformation from
the proper Lorentz group.

Now, the requirement that B�� is positive definite on LC+

reads

B0 − �B1 sin � cos � + B2 sin � sin � + B3 cos �� 	 0

for all 0���� and �. This holds when B0 is larger than any
Bi. �

Let us also see what changes for a potential stable in a
weak sense. First, the statement that the eigenvalues are real
and therefore eigenvectors can be also chosen real remains
valid in this case. However, at least one eigenvector must
now lie on the surface of LC+. This means that B�� is in
general not diagonalizable by the SO�1,3� transformation
group. More details are given in Sec. IV.

APPENDIX C: NECESSARY CONDITION FOR THE
SPONTANEOUS VIOLATION: EXPLICIT CALCULATIONS

Here, we show that the global minimum of the potential
with all distinct Bi and A�= �A0 ,A1 ,A2 ,0� can spontaneously
break the Z2 symmetry given by reflections of the third axis,
only if B3 is the largest spacelike eigenvalue,

B3 	 B1,B2. �C1�

We assume, of course, that the vector A� lies inside the caus-
tic cone,

A1
2

�B3 − B1�2 +
A2

2

�B3 − B2�2 

A0

2

�B0 − B3�2 . �C2�

his will be done by comparing the depth of the potential at
the extrema that conserve and violate this symmetry. We will
see that Eq. �C1� is necessary for the pair of symmetry-
violating extrema to be the deepest ones.

If �r�� is an extremum point, then the potential at this
point is

V = − A��r�� +
1

2
B���r���r�� = −

1

2
A��r�� = −

1

2
B���r���r�� .

According to Eq. �18�, the symmetry-violating extrema take
place at

r0 = r0
�3� =

A0

B0 − B3
.

The depth of the potential at this point is

�V3� =
1

2
� A0

2

B0 − B3
+

A1
2

B3 − B1
+

A2
2

B3 − B2
� .

Pick up another extremum �necessarily a symmetry-
conserving one�. It takes place at another r0, which we re-
write as r0�r0

�3�x. The depth of the potential at this point is

�V� =
1

2
r0�A0 − A1n1 − A2n2�

=
1

2
x	 A0

2

B0 − B3
−

A1
2

�B0 − B3� − �B0 − B1�x

−
A2

2

�B0 − B3� − �B0 − B2�x
 .

Here, n1 ,n2 are

n1 =
A1

A0 − �B0 − B1�r0
, n2 =

A2

A0 − �B0 − B2�r0
, n1

2 + n2
2 = 1.

Note that the last equation, in fact, is the fourth-order equa-
tion for r0.

The difference between the two depths can be presented,
after some algebra, in the following way:
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�V3� − �V� =
�1 − x�A0

2
� A0

B0 − B3
−

A1n1

B1 − B3
−

A2n2

B2 − B3
� .

�C3�

The expression in large parentheses can be rewritten as
��n�, where n�= �1,n1 ,n2 ,0� and

�� = � A0

B0 − B3
,

A1

B1 − B3
,

A2

B2 − B3
,0� .

From the caustic condition �C2� one obtains ����	0, i.e.,
the 4-vector �� lies strictly inside LC+. On the other hand, n�

lies on the surface of LC+, and therefore ��n�	0. Thus, the
sign of the depth difference is given solely by the value of x.

If B3 is the largest spacelike eigenvalue, then all
symmetry-conserving extrema correspond to r0
r0

�3�, i.e., to
x
1. Therefore, all of them lie above the symmetry-
violating points �and are saddle points, according to Propo-
sition 2�. If B3 is not the largest spacelike eigenvalue, then
there will necessarily be another extremum with r0	r0

�3�,
which corresponds to x	1 and, therefore, lies deeper than
the symmetry-violating points �which are saddle points in
this case�.

An alternative, somewhat longer way to prove condition
�C1� using geometric properties of the potential was given in
�29�.

APPENDIX D: CRITICAL EXPONENT FOR THE
DISTANCE SQUARED FUNCTION DEFINED ON A

PLANAR CURVE

Let !�t� be a regular parametrization of a smooth plane
curve; see, e.g., �35�. Take a point on this curve, assuming
that it corresponds to t=0, and choose the coordinate frame
at this point such that axis x is along the tangent and axis y is
along the normal to the curve at this point; see Fig. 7. The
curve can then be parametrized as !�t�= (X�t� ,Y�t�), with

X�t� = t, Y�t� =
t2

2R0
+ antn + o�tn� . �D1�

Here, R0 is the curvature radius of ! at t=0, while n	2
describes the next higher-order term.

Now, select a point r�= �x ,y� on this plane and calculate
the distance squared from this point to the points of the
curve, 
2�t���X�t�−x�2+ �Y�t�−y�2. This function has points
of extrema at some values of t. For a generic point r�, 
2�t�
will have a generic value at t=0. However, if r� lies on the y
axis, then 
2�t� has a maximum or minimum at t=0. At a
special �“critical”� point along this axis, r�= �0,R0�,


2�t� = X2�t� + �Y�t� − R0�2 � const − 2R0antn +
t4

4R0
2 .

Therefore, the osculating circle has a threefold or fourfold
contact with the curve !, depending on whether n=3 or n
�4. As the point r� moves along the y axis and passes
through �0,R0�, a bifurcation takes place of the function

2�t�.

There are two possibilities to consider. If !�0� is a generic
point on a generic smooth curve, then expansion �D1� starts
from n=3, and at small t, 
2�t� has a minimum and a maxi-
mum near t=0, both of which cannot be the global ones.
Instead, if !�0� is an apex of the curve �this is the situation
shown in Fig. 7�, then expansion �D1� starts from n=4, and
at this critical point the minimum of 
2�t� splits into a mini-
mum a maximum/minimum sequence. This is the only type
of bifurcation in which the global minimum of the function

2�t� can participate, and we now focus on it.

Let us shift r� away from the critical point by a small
amount, r�= ��x ,R0+�y�, and recalculate 
2�t�,


2�t� � const + t4� 1

4R0
2 − 2a4R0� − 2�xt −

�yt
2

R0
. �D2�

For a generic curve !�t� �the second-order curves included�,
the coefficient in front of t4 is nonzero. Finding the minimum
of Eq. �D2�, expanding 
2 near it, and extracting the coeffi-
cient in front of the quadratic term �t− tmin�2, which should
behave as �����, gives us the value of �. One can easily find
that it depends on the direction of approach to the critical
point,

generic direction ��x � 0� → � = 2/3,

symmetric approach ��x = 0� → � = 1. �D3�

The latter case, by construction, corresponds effectively to
the standard one-order-parameter Ginzburg-Landau model.

This study can be generalized to the �n+1�-dimensional
case. Given a smooth n-manifold !�t1 , . . . , tn�, one can
choose a point of this manifold that would correspond to the
global minimum, align the coordinate axes with the eigen-
vectors of the quadratic term, and parametrize the manifold
as

x

R0

ε

γ(t)

y

FIG. 7. Regular curve !�t� and its evolute �dashed line�; see
text.
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X1 = t1, . . . ,Xn = tn, Y �
t1
2

2R1
+ ¯ +

tn
2

2Rn
+ a4t1

4.

�D4�

Here, we labeled the axes according to R1
R2
 ¯ 
Rn;
the bifurcation we study is at r�= �0, . . . ,0 ,R1�. The calcula-

tions can be repeated giving the same result: if �x�0, then
�=2 /3, otherwise �=1. Now � must be understood as the
distance from the closest among the cusp points of the evo-
lute. This result does not depend on the particular shape of
the manifold, since it is essentially driven by the fourth-order
nature of the bifurcation point.
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